Course curriculum

    1. Course Introduction

    2. Course Overivew

    1. NLP Defined

    2. ANN Architecture

    3. Deep Learning Defined

    4. Keras

    5. Keras Model Components

    6. Keras Demo Introduction

    1. Demo: Manual Tokenization

    2. Demo: NTLK

    3. Demo: Data Preparation in SciKit-Learn: CountVectorizer

    4. Demo: Data Preparation in SciKit-Learn: TfidfVectorizer and HashVectorizer

    5. Demo: Prepare Text with Keras: Part 1

    6. Demo: Prepare Text with Keras: Part 2

    1. Bag-of-Words

    2. Anatomy of the Bag-of-Words Model

    3. Managing Vocabulary

    4. Bag-of-Words Model Limitations

    5. Demo: Data Preparation for Sentiment Analysis: Part 1

    6. Demo: Data Preparation for Sentiment Analysis: Part 2

    7. Demo: Neural Bag of Words Model: Part 1

    8. Demo: Neural Bag of Words Model: Part 2

    1. Word Embedding Defined

    2. Word2Vec

    3. Demo: Word2Vec with Gensim

    4. Demo: Visualize Word Embeddings

    5. Keras Embedding Layer

    6. Demo: Word Embedding in Keras

    1. Deep Learning and Text Classification

    2. Single Layer CNN Architecture

    3. Demo: Embedding + CNN Model for Sentiment Analysis

    4. Demo: Embedding + CNN Model for Sentiment Analysis: Train Embedding Layer

    5. Demo: Develop Multi-Channel CNN: Part 1

    6. Demo: Develop Multi-Channel CNN: Part 2

About this course

  • Free
  • 60 lessons
  • 3 hours of video content