Course curriculum

    1. Course Introduction

    2. Course Overview

    1. Two Branches of Statistics

    2. Statistics and Machine Learning

    3. Gaussian Distribution

    4. Sample vs Population

    5. Demo: Gaussian Distributions in Python

    6. Measures of Central Tendency

    7. Measures of Variability

    8. Demo: Calculating the Mean and Median in Python

    9. Demo: Variance

    10. Randomness in Machine Learning

    11. Demo: Random Numbers with Python

    12. Demo: Random Numbers with NumPy

    13. When to Seed and Controlling for Randomness

    14. Law of Large Numbers

    15. Central Limit Theory

    16. Demo: Central Limit Theory

    1. Statistical Hypothesis Testing

    2. Defining P-Value

    3. Reject or Fail Null Hypothesis

    4. Errors in Hypothesis Testing

    5. Statistical Distributions

    6. Density Functions

    7. Demo: Probability Density function in Python

    8. Student's T-Distribution

    9. Chi-Squared Distribution and Demo: Chi-Squared Distribution

    10. Critical Values

    11. One-Tailed and Two-Tailed Tests

    12. Demo: Calculating Critical Values

    13. Correlation Defined

    14. Demo: Strong Positive Correlation

    15. Covariance and Covariance Demo

    16. Pearson's R Defined and Demo

    17. Parametric Statistical Tests

    18. Demo: Parametric Significance Tests

    19. Effect Size

    20. Demo: Pearson's Correlation Between Two Variables

    21. Statistical Power Defined

    22. Power Analysis: The Core 4

    23. Demo: Student’s t-Test Power Analysis

    1. Data Sampling and Resampling

    2. Sampling Errors

    3. Statistical Resampling

    4. Bootstrap Approach

    5. Demo: Bootstrap in Python

    6. K-Fold Cross-Validation

    7. Demo: K-Fold Cross Validation

    8. Variations on Cross-Validation

    9. Demo: Train/Test Split

    1. Problems with Hypothesis Testing

    2. Estimation Statistics Defined

    3. Effect Size

    4. Interval Estimation

    5. Tolerance Intervals

    6. Demo: Parametric Tolerance Intervals

    7. Confidence Intervals

    8. Demo: Confidence Intervals

    9. Demo: Non-Parametric Confidence Intervals

    10. Prediction Intervals

    11. Demo: Prediction Intervals Using Linear Regression

About this course

  • Free
  • 61 lessons
  • 2 hours of video content