Course curriculum

    1. Course Introduction

    2. What is XGBoost?

    3. Demo: XGBoost Pima Indian Diabetes

    4. Summary

    1. Section Introduction

    2. Gradient Boosting and the Decision Tree

    3. Recursive Binary Splitting

    4. Demo: Label Encoding with XGBoost

    5. Ensembles

    6. Bagging and Boosting

    7. Demo: Kfold Cross Validation with XGBoost

    8. Summary

    1. Section Introduction

    2. Demo: Handling Missing Data

    3. Demo: Serialize a Model with Pickle

    4. Demo: Importance Scores using XGBoost

    5. Demo: Caution using Importance Scores in XGBoost

    6. Demo: Monitor Model Performance

    7. Demo: Model Evaluation using Learning Curves

    8. Demo: Early Stopping in XGBoost

    9. Demo: Regression Model in XGBoost

    10. Demo: Parallelism in XGBoost

    11. Demo: Hyperparameter Default Recommendations

    12. Demo: Tuning the Number of Decision Trees

    13. Demo: Tuning Row Subsampling

    14. Demo: Tuning the Learning Rate

    15. Demo: Kaggle Top Titanic Model

    16. Summary

About this course

  • Free
  • 28 lessons
  • 1.5 hours of video content